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1 Modules

Exercise 1.1. All vector spaces are modules. Every ring is a module over itself, and
its submodules are precisely its ideals. Modules over Z are exactly the abelian groups
up to isomorphism.

Proof. Since all fields k are in particular rings, it follows from the defining properties
that a k-module is just a k-vector space. The action of a ring A onto itself defined as
just the product of elements in A makes indeed A into an A-module, and a subgroup
that is closed under this action is precisely the concept of an ideal. Finally, note that
given an abelian group there is a unique way of defining the action by elements of Z:
n ˚ a is a` a` ...` a precisely n times. �

Example 1.2. f : M Ñ N linear map, kerp f q submodule of M and Imp f q submodule of
N.

Exercise 1.3. f : M Ñ N linear is injective ô kerp f q “ t0u

Proof. If f is injective, x P kerp f q implies f pxq “ 0 “ f p0q, so that x “ 0. Conversely,
f pxq “ f pyq ô f pxq ´ f pyq “ 0 ô f px ´ yq “ 0 ô x ´ y P kerp f q “ t0u so that
x “ y. �

Exercise 1.4. M is a free module if there is a basis (ô there is an isomorphism
ApIq ” M for some set I, ApIq “ ‘IA ‰ AI).
Prove the above equivalence.

Proof. If there is a basis pxiq with i P I then f : M Ñ ApIq given by sending each elements
to its coefficients when expressed uniquely in the basis is an isomorphism. Conversely,
if such isomorphism exists, then taking xi P M such that f pxiq “ ei peip jq “ δi j for all
j P Iq is easily seen to be a basis for M. �

Exercise 1.5. If M is finitely generated and has a basis, then the basis is finite.

Proof. Let m1, ...,mN generate M. Now consider some basis tbiu where i ranges over
some possibly infinite set. We can express each generator in terms of the basis, say
mi “ ai1bi1 ` ...` aiNi

biNi
But this makes it apparent that only finitely many elements of

tbiu are needed to generate M (namely biNi
where i ranges from 1 to N). �
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Exercise 1.6. If a finitely generated Z-module has two different bases, they are the
same size.

Proof. Call the Z-module M. Due to the previous exercise, we know every basis is
finite. Choose such a basis m1, ...,mN. By a prior exercise, we know the module is
isomorphic to ZN. Now considering the module M as a group, take the subgroup
2M “ tm P M|Dn such that m “ n` nu. Note that M{2M is a group of order 2N. But
the defintion of M{2M does not depend on any choice of basis, so all bases must be
length N. �

Exercise 1.7. (ISOMORPHISM THEOREM) If f : M Ñ N linear surjective map,
prove that M{kerp f q is isomorphic to N as modules.

Proof. Define f̃ : M{Kerp f q Ñ N by f̃ pm̃q “ f pmq P N. This is readily seen to be
well-defined and surjective. For injectivity, f pm̃q “ 0 ô f pmq “ 0 ô m P kerp f q, so
that m̃ “ 0̃. �

1.1 Noetherian modules:

Exercise 1.8. A noetherian, M A-module then M is noetherian if and only if M is
finitely generated.

Proof. If M is noetherian, then every submodule is finitely generated, in particular M
itself. Conversely, if M is finitely generated then there exists a surjective morphism
f : Am Ñ M for some natural m, and so by Isomorphism Theorem M is a quotient of
Am (which is Noetherian by hypothesis), and thus noetherian itself. �

Exercise 1.9. Prove the converse of Hilbert’s Theorem: If ArXs is noetherian ñ A is
noetherian.

Proof. Applying the Isomorphism Theorem to the evaluation morphism f : ArXs Ñ A
, f pppxqq “ ppaq we obtain that A is isomorphic to Arxs{ ă x ą; since the latter is a
quotient of a noetherian ring by hypothesis, the former is also noetherian. �

1.2 Localization

Exercise 1.10. Let p be a prime ideal of A, Ap “ S´1A, S “ A´ p multiplicative and
δ defined as

δ : A Ñ S´1A
a ÞÑ a{1

of A. S´1A with δ has the following universal property: Let f : A Ñ B be a ring homo-
morphism then f factorizes uniquely though S´1A if and only if f pSq Ă Bˆ (invertible)

A

δ
��

f // B

S´1A
f̃

<<zzzzzzzz
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f̃ is a ring homomorphism f̃ pa{sq “ f paq f psq´1, f psq P Bˆ.
Prove the above universal property.

Proof. We can check that f̃ is well-defined: if a{s “ b{t then there exists u P S such that
upat´bsq “ 0 and then applying f we get f puq˚p f patq´ f pbsqq “ 0 and thus (since f puq
is a unit) f paq f ptq ´ f pbq f psq “ 0, which then implies f paq f psq´1 “ f pbq f ptq´1, as we

wanted to prove. Clearly f̃ makes f factor through δ. Conversely, if such a map f̃ exists,

it has to satisfy f̃ ps{1q “ f psq and also since 1 “ f̃ p1{1q “ f ps{1 ˚ 1{sq “ f psq ˚ f̃ p1{sq
then f psq must be in Bˆ and f̃ has to be f̃ pa{sq “ f paq f psq´1. �

Notation: B ring, SpecpBq “ tprime ideals o f Bu (Spectrum of B). If f : A Ñ B ring
homomorphism ñ

Specp f q : SpecpBq Ñ SpecpAq
Q ÞÑ f´1pQq

Exercise 1.11. Show that for any ring homomorphism f : A Ñ B that Specp f q indeed
sends elements in SpecpBq to elements in SpecpAq

Proof. Choose some prime ideal pB in SpecpBq. Now let pA “ Specp f qppBq “ f´1ppBq

Now check that pA is an ideal. Let a, b P pA Then f paq, f pbq are in pB and then so is
f paq ` f pbq “ f pa` bq. Then a` b is in pA “ f´1ppBq Now Let a P pA and r P A. Then
again f paq P pB and f praq “ f prq f paq P pB since pB is an ideal. Hence ra P pA and pA is
an ideal. Now check pA is prime. Suppose ab P pA. Then f pabq “ f paq f pbq P pB then
either f paq or f pbq by primality of pB. Then one of a or b is in f´1ppBq. We also must
check that f´1ppBq is not the entire ring B. Supposing it is, then it contains 1B. But
then pA would have had to contain 1A which is a contradiction. �

Proposition 1.12. Specp f q : SpecpS´1Aq Ñ SpecpAq induces a bijection from SpecpS´1Aq
to tQ P SpecpAq|QX S “ Hu where f : A Ñ S´1A is defined f paq “ a{1.

Proof. Surjection: First choose some pA P SpecpAq where pA X S “ H Now let pS´1A “

ideal-generated-byt f paquaPpA “ ta{suaPpA,sPS. Then Specp f qppS´1Aq “ f´1ta{suaPpA,sPS.
Obviously f´1ppS´1Aq Ă pA. Now show f´1ppS´1Aq “ pA. Choose c P f´1ppS´1Aq Then
c{1 “ a{s for some a P pA and s P S. Then there is a t P S such that tpa ´ csq “ 0.
0 P pA because pA is an ideal. Then tpa´ csq P pA but t R pA so by primality a´ cs P pA.
Then cs “ pcs´ aq ` a P pA because again pA is an ideal. Then again by primality and
the fact that s R pA, c P pA. So we have f´1ppS´1Aq “ pA Injection: Choose two different
prime ideals of S´1A called pS´1A and qS´1A. wlog there is a{s P pS´1A, a{s R qS´1A. Then
a{1 R qS´1A or else a{s P qS´1A ˚ p1{sq Ă qS´1A. Similarly a{1 P pS´1A ˚ s Ă pS´1A. Then
a P f´1ppS´1Aq and a R f´1pqS´1Aq, proving that the function Specp f q is 1-to-1. We have
shown before that Specp f q sends prime ideals to prime ideals. The only thing to check is
that the Specp f qppq does not intersect S for any prime ideal p. But this is true because
if Specp f qppq contained some s P S, then p would have contained 1{s and therefore it
would have also contained 1 via p ˚ s Ă p, violating primality of p. �

Exercise 1.13. Prove the above definitions are well defined and do make S´1M into a
S´1A-module.
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Proof. Straightforward. �

Exercise 1.14. Let S be a multiplicatively closed subset of a ring A and let M be a
finitely generated A-module. Prove that S´1M “ 0 if and only if there exists s P S such
that sM “ t0u.

Proof. S´1M “ 0 if and only if m{1 “ 0{1 @m P M (same equivalence class) if and
only if exists s P S such that spm ˚ 1 ´ 0 ˚ 1q “ 0 if and only if s ˚ m “ 0 @m P M i.e.
sM “ t0u. �

1.3 Tensor product

Proposition 1.15. The tensor exists and is unique.

Proof. 1. uniqueness
Let ρ : MˆN Ñ H1 a another tensor product

MˆN

δ
��

ρ // H1

δ̃

{{vvv
vv
vv
vv
v

H
ρ̃

;;vvvvvvvvvv

ρ̃ and δ̃ are linear and unique.

MˆN
δ
��

ρ // H1

H
ρ̃˝δ̃“Id1H ,δ̃˝ρ̃“IdH

;;vvvvvvvvvv

δ̃ ˝ ρ̃ “ IdH ñ ρ̃ isomorphism.

2. Existence:
ApMˆNq px, yq P MˆN,

epx,yq P ApMˆNq
“

"

1 in px, yq (coordinate)
0 elsewhere

tepx,yq|px, yq P MˆNu is a basis of ApMˆNq.

L “ submodule of ApMˆNq generally by the element

epx1,x2,yq ´ epx1,yq ´ epx2,yq

epx,y1`y2q ´ epx,y1q ´ epx,y2q

xi P M, yi P N.
epax,yq ´ epx,ayq, epax,yq ´ aepx,yq, a P A

ρ : MˆN Ñ ApMˆNq{L
px, yq Ñ epx,yq mod 2 “ ēpx,yq
px1 ` x2, yq ÞÑ epx1`x2,yq “ ēpx1,yq ` ēpx2,yq “ epx1,yq ` epx1,yq ` epx2,yq
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f bilinear Let

MˆN
ρ
��

f // E

f̃zzvvv
vv
vv
vv
v

zzvvv
vv
vv
vv
v

ApMˆNq{L

px, yq

��

f // f px, yq

ēpx,yq
f̃

::uuuuuuuuu

f̃ exist, f̃ 1pēpx,yqq “ f̃ 1 ˝ f px, yq “ f px, yq.
Define f̃ pēpx,yqq “ f px, yq. Let g be the linear map defined by

g : ApM,Nq Ñ E
epx,yq ÞÑ f px, yq

ÿ

px,yq

apx,yqepx,yq Ñ
ÿ

px,yq

apx,yq f px, yq

L Ă kerpgq (Lra f bilinear).

epx1`x2,yq ´ epx1,yq ´ epx2,yq

ApMˆNq

��

g // E

ApM,Nq{A
ρ̃

;;wwwwwwwww

ÿ

apx, yqēpx,yq “
ÿ

epax,yqepx,yq “
ÿ

pax, yqxb y

ρ : MˆN Ñ AMˆN{L is a tensor product of M, N over A.
�

Exercise 1.16. Show that Z{mZbZ Z{nZ “ t0u if m,n are coprime.

Proof. Since m and n relatively prime there exists a linear combination am ` bn “ 1.
Then xby “ pamx`bnxqby “ apmxbyq`bpxbnyq “ ap0byq`bpxb0q “ 0`0 “ 0 �

Proposition 1.17. A ring, M, N A-modules

1. MbA A » M;

2. MbN » N bA M;

3. p‘iMiq bA N » ‘ipMi bA Nq;
4. Lb pMbNq » pLbMq bN.
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Proof. 1. MbA A » M sending xb a “ paxq b 1 to ax.
Let MˆA Ñ M sending px, aq to xa. It is a bilinear map such that the following
diagram is commutative:

Mˆ A //

ρ

��

M

MbA A

::vvvvvvvvv

2. same kind of proof: we define MbA N » N bA M by mapping xb y to yb x.

3. We define p‘iMi bA N » ‘ipMi bA Nq by mapping pxiqi b y ÞÑ pxi b yqi.
�

Corollary 1.18. If M is free over A with a basis peαqα then every elements g MbA N
can be written uniquely as

ř

α eα b yα, yα P N,

p‘iMiq bA N » ‘ipMi bA Nq
pxiqi ‘ y ÞÑ pxi b yqi

Proof. use Proposition (c) �

2 Complex of modules over A

Exercise 2.1. Let 0 //M0
f0 //M1

f1 //M2
// 0 be an exact sequence of A-

modules. If M0,M2 are finitely generated, so is M1.

Proof. Let m P M1 and consider f2pmq P M2. Since M2 is finitely generated and f2
is surjective, we can find x1, x2, ..., xr in M1 such that f2pmq “ a1 f2px1q ` a2 f2px2q `

... ` ar f2pxrq, so f2pm ´ a1x1 ´ ... ´ arxrq “ 0. By exactness, Kerp f2q “ Imp f1q so
there exists a (unique since f1 is injective) y generated by y1, y2, ..., ys P M0 such that
f1pyq “ m´ a1x1 ´ ...´ arxr, and then m “ a1x1 ` ...` arxr ` f1pb1y1q ` ... f1pbsysq. We
see then that x1, x2, ..., xr, f1py1q, f1py2q, ..., f1pysq generate M1. �

Proposition 2.2. Let

0 //M0
f0 //M1

f1 //M2
// 0

be a short exact sequence. Let N be a A-module then, the complex

0 //M0 bA N
f0 //M1 bA N

f1 //M2 bA N // 0

is exact (at right), that is M1 bA N�M2 bA N.

Proof. φ : M0 � M1, M0 b N � M1 b N,
ř

xi b yi ÞÑ
ř

i φpxiq b y. Let’s show that
Impψ : M0 bN Ñ M1 bNq “ kerpφb IdNq p˚q.
We know that

M0 bN

��

φ //M1 bN

pM1 bNq{Impφb Idq
φ̃

55llllllllllllll
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p˚q ô φ̃ is injective.
�

Corollary 2.3. I ideal of A, M A-module then MbA A{I » M{IM

Proof.

0 // I
f0 // A

f1 // A{I // 0

ôbA 0 // I bA M
f0 // AbA M

f1 // A{I bA M // 0

I bA M Ñ AbA M » M sending αb x to αb x Ñ αx
@α P I , @x P M, ImpI bA M Ñ Mq “ IM.
Proposition implies

0 // IM
f0 //M

f1// A{I bA M // 0

exact implies M{IM » A{I bM. �

Theorem 2.4. M is flat ô for any injective morphism N1 Ñ N2 linear map of A-
module then M is flat ô M is torsion free.
Let M be a module on an integral domain A. M is torsion free, if ax “ 0, a P A ñ a “ 0
or x “ 0 that is equivalent to @a P Azt0u, ¨aM Ñ M sending x to ax is injective.

Proof. 1. For any integral domain A, M flat A-module implies M torsion free.
@a P Azt0u, ¨A : A ãÑ A implies M » MbA A Ñ MbA A » M injective. So that,
M is torsion free.
For the converse, @I ideal of A, I ‰ 0, I “ aA, a ‰ 0, M torsion free implies
¨a : M ãÑ M implies I bA M ãÑ M.

�

Exercise 2.5. 1. Let A be a nonzero ring. Show that Am » An then m “ n.

2. Could you use the same proof to show that if f : Am Ñ An is surjective, then
m ě n?

3. Could you use the same proof to show that if f : Am Ñ An is injective, then
m ď n?

Proof. Let f : Am Ñ An be an isomorphism. Then we have an exact sequence

0 // Am f // An // 0

Choose any maximal ideal M of A and tensor with the field A{M

0 // pA{Mqm
f̃ // pA{Mqn // 0

and since A/m is a field, we have now an isomorphism of A{M vector spaces, so that
we can conclude m “ n. If we only know surjectivity, the same proof can be used by
replacing the exact sequence with

0 // Kerp f q // Am f // An // 0
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, since tensor product preserves exactness from the right. If we only know injectivity,
since the tensor product in general will not preserve the exact sequence, we cannot
apply the same proof (even though the result is true). �

2.1 Tensor product of algebras

Proposition 2.6. Given B, C two algebra. For any A-algebra D, and ring homomor-
phism φ : B Ñ D, ψ : C Ñ D, there exists a unique ring homomorphism BbA C Ñ D.

B
iB
��

φ

##G
GG

GG
GG

GG
G

BbA C θ // D

C

iC

OO
ψ

;;wwwwwwwwww

is commutative. Here, iB sends b to bb 1 and c to 1b c.

Proof. 1. θp
ř

i bi b ciq “
ř

i φpbiqψpciq.

2. θ is well defined.

3. θ satisfies the required properties. Uniqueness is clear

θpbb cq “ θppbb 1q ¨ p1b cqq “ θpbb 1qθp1b cq “ φpbqψpcq

ArX1, ...,Xns bA ArY1, ...,Yms » ArX1, ...,Xn,Y1, ...,Yms

injective (free). AsA-modules, Xα1
1 ....X

αn
n b Yβ1

1 ...Y
βm
n Ñ Xα1

1 ...X
αn
n Yβ1

1 ....Y
βm
m .

ArX1, ...,Xns{I bA ArY1, ....,Yms{J » ArX1, ....,Xn,Y1, ...,Yms{pI, Jq

�

2.2 Nakayama lemma

Theorem 2.7. pa,m0q a local ring (i.e. m the unique maximal ideal of A. Let M be a
finitely generated A-module such that M “ m0M then M “ 0.

Proof. Suppose M ‰ 0. Let tx1, ..., xnu be a set of generators of M chosen n minimal.
x1 P M “ m0M. Then, there is α1, ..., αm P m such that x1 “ α1x1 ` ...` αnxn. So that,
p1´ α1q R mñ 1 ¨ α1 P A˚

ñ x1 “ p1´ α1q
´1α2x2 ` ¨ ¨ ¨ ` p1´ α1q

´1αnxn

ñ tx1, ..., xnu generates M.
Contradiction implies that M “ 0. �

Proposition 2.8. Let M be a A-module then M is flat if and only if for any B prime
ideal of A, MbA B is flat over B if and only if for any m maximal ideal of A, MbA Am
is flat over Am
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Proof. ñ M is flat over A implies trivially that MbA B flat over B. The converse is left
as exercise. �

Exercise 2.9. Prove that if A is a local ring, M and N are finitely generated A-modules,
and MbA N “ 0, then one of M or N is zero.

Proof. We have by above M{IM » A{I b M for I the maximal ideal, so M surjects
onto k b M (where k “ A{I field). Similarly for N and k b N . Thus M bA N “Ñ

pk bMq b pk bNq is surjective. Now the module on the right is really a k-module and
the tensor product is really over k, since the tensor product of k-modules over A is really
over k since factors that pull across are in equivalence classes mod m. Thus if MbA N is
zero, then pkbMqb pkbNq is zero. This is a tensor product of k-vector spaces of finite
dimensions (since M,N are finitely generated), say m and n. Then this has dimension
mn “ 0. So m “ 0 or n “ 0 since Z is a domain! Then M{IM “ 0 (or similary for N)
implying that M “ IM (or likewise for N). Now the Nakayama lemma applies since M
(or N) is finitely generated and A is local, to conclude M “ 0 (or N “ 0). �

Theorem 2.10. Let pA,mq be a local ring. Let M be a finitely generated A-module then
M is flat if and only if M is free.

Proof. M free ñ M flat in general even if M is not finitely generated. Suppose that M
is flat MbA A{m “ MbA j » M{mM Ñ k “ A{m (k is a field the residue field of A.) is a
vector space over k of finite dimension. If x1, ..., xn P M are such that x̄1, ..., x̄n P MbA k
is a basis.
We want to prove tx1, ..., xnu is a bases of M over A.

1. If tx1, ..., xnu in M such that tx̄1, ..., x̄nu genrates Mbk implies tx1, ..., xnu generates
M.

2. If tx1, ..., xnu in M such that tx̄1, ..., x̄nu is free implies tx1, ..., xnu is free.

1. Suppose that tx̄1, ..., x̄nu generates Mb k. Let N “ M{px1A` ...` xnAq, N{mN »

NbA k “ Mbk{px̄1k` ...` x̄nkq “ 0 implies N “ mN, since N is finitely generated
Nakayama lemma implies that N “ 0, so that M “ x1A` ¨ ¨ ¨ ` xnA.

2. One can suppose n is the smallest integer such that there is tx1, ..., xnu in M not
free, with tx̄1, ...., x̄nu free in Mb k. There is a1, ..., an P A such that

řn
i“1 aixi “ 0

at least one ai ‰ 0.

0 // kerp f q // An f // A

pb1, ..., bnq implies that
řn

i“1 biai.

M flat over A implies 0 // kerp f q bA M //Mn fM //M .

px1, ..., xnq P kerp fMq “ Impkerp f q bA M,Mnq py1, ..., ynq ÞÑ
řn

i“1 aiyi.
b j P Kerp f q Ă An implies px1, ..., xnq P Mn. b j “ pb1 j, ..., bnjq,

ř

j b j b y j “
ř

jpb1 j b y j, ..., bnj b y jq.

px1, ..., xnq “ p
ř

j b1 jy j,
ř

j b2 jy j, ...q.

x1 “
ř

j b1 jy j in M b k implies x̄1 “
ř

j b̄1 j ȳ j, b j P kerp f q. So that, at least one

b̄1 j ‰ 0.
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Suppose ¯b11 ‰ 0 ñ b11 R m. (There is a1, ..., an P A, such that
řn

i“1 aixi “ 0 at
least one ai ‰ 0).

b11a1 ` b21a2 ` ...` bn1an “ 0

a1 ` c2a2 ` ...` cnan “ 0, ci “
ÝÝÝÑ
bn1bi1

If n “ 1 then a1 “ 0.
If n ď 1 the a2px2 ´ c1x1q ` ¨ ¨ ¨ ` anpxn ´ cnx1q “ 0, tx̄2 ´ c̄1x̄1, . . . , x̄n ´ c̄nx̄1u is
free ñ ai “ 0, then ta1, .., anu free in M tensor, M is free.

�

Exercise 2.11. If M and N are flat A-modules, then so is MbA N.

Proof. If 0 //M0
//M1

//M2
// 0 exact sequence of A-modules, then since

N is exact:
0 // N bM0

// N bM1
// N bM2

// 0

. Now, since M is exact:

0 //Mb pN bM0q
//Mb pN bM1q

//Mb pN bM2q
// 0

But since Mb pN b Pq » pMbNq b P we conclude

0 // pMbNq bM0
// pMbNq bM1

// pMbNq bM2
// 0

so MbA N is flat. �

3 Hilbert Nullstellensatz

Exercise 3.1. Explain how to deduce the Weak Nullstellensatz from the Strong Null-
stellensatz.

Proof. If I is taken to be maximal in the Strong Nullstellensatz, then the intersection
contains only one element: I itself. �

4 Categories

Definition 4.1. A category C consists of:

1. A ” collections” of objects: obpCq;
2. @X,Y P ObpCq a ”collections” of objects: of sophisms : MorpX,Yq (morphism from

X to Y), such that @X,Y,Z P obpCq

MorpX,Yq ˆMorpY,Zq Ñ MorpX,Zq
p f , gq ÞÑ g ˝ f

3. ` associativity.
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4. @x P obpφq, DIdX P MorpX,Xq such that f : X Ñ Y, f ˝ IdX “ f , IdY ˝ f “ f .

Example 4.2. 1. sets:
— objects: sets
— MorpX,Yq: maps from X to Y.

2. groups
— objects: groups;
— MorpX,Yq “ t group homomorphism from X to Yu

3. A ring, A-Mod

Definition 4.3. 1. A category C with obpφq “ one element is called a monoid.

2. A category is locally small if @X,Y P obpCq, MorpY,Xq is a set category is small,
if obpCq, MorpX,Yq are sets.

3. obpCq “ tXu, MorpX,Xq “ IdX trivial monoid

4. Opposite category= Cop of a given category obpCopq “ obpCq and MorCoppX,Yq “
MorCpY,Xq.

Definition 4.4. 1. f : X Ñ Y is an isomorphism if Dg : Y Ñ X such that f ˝g “ IdY
and g ˝ f “ IdX.

2. f : X Ñ Y is a monomorphism if @Z, @ Z
g //

h
// Z such that f ˝ g “ f ˝h ñ g “ h.

3. f : X Ñ Y is an epimorphism if @Z P obpCq, @ X
f // Y

g //

h
// Z such that g˝ f “

h ˝ f ñ g “ h.

Example 4.5. 1. In sets, groupes A-Mod, monomorphism are injection and epi-
morphism are surjection.

2. In topology, monomorphism + epimorphism does not imply isomorphism in gen-
eral.

4.1 Functors

Definition 4.6. A functor F : CÑ D consist of

1. F : obpCq Ñ obpDq,
2. X,Y P ObpCq, F : MorpX,Yq Ñ MorpFpXq,FpYqq such that FpIdXq “ IdFpXq

3. X
f // Y

g // Z

4. FpXq
Fp f q // FpYq

Fpgq // FpZq ;

5. Fpg ˝ f q “ Fpgq ˝ Fp f q

Example 4.7. 1. Forgetful functor

Groups Ñ Sets
X ÞÑ X
MorpX,Yq ÞÑ MorpX,Yq

11



2. A Ñ B ring homomorphism

A´Mod Ñ B´Mod
M ÞÑ MbA B
MorpM,Nq ÞÑ MorpMbA B,Y bA Bq
u ÞÑ ub IdB

Definition 4.8. A contravariant functor F : CÑ D is a covariant functor CÑ Dop.

Example 4.9. C small category, X P obpCq,

hX : C Ñ Sets
Y ÞÑ MorpY,Xq

;
—

MorpY,Zq Ñ MorpMorpZ,Xq,MorpY,Xqq
f : Y Ñ Z ÞÑ g ÞÑ g ˝ f

— C
F //D

G // G , G ˝ F composite associative
— Category of the Category: Cat object= categories and morphism= functor

Definition 4.10. F : CÑ D functor

1. F is full if @X,Y P obpCq, MorpX,Yq�MorpFpXq,FpYqq;
2. F is faithful if MorpX,Yq ãÑ MorpFpXq,FpYqq;
3. F is fully faithful if it is full and faithful.

4. A subcategory C of D, obpCq Ă obpDq,

X,Y P ObpCq,MorCpX,Yq Ă MorDpX,Yq,MorCpX,Yq ˆMorCpY,Zq Ñ MorCpX,Zq

5. full subcategory C of D, MorCpX,Yq “ MorCpX,Yq.

Example 4.11. — group subcategory of Sets;
— ModA subcategory of Groups;
— ModQ full subcategory of Groups;
— E,FQ-vector space, f : E Ñ F homomorphism of groups
Z-linear ñ f pxq “ f pn{nxq “ n f p1{nxq, so that 1{n f pxq “ f p1{nxq.

4.2 Morphism of functor

Definition 4.12. 1.

C
F //

G
//D

functors, a morphism from F to G ( a natural transformation given by @X,Y P

ObpCq, αX : FpXq Ñ GpXq, αX P MorpFpXq,GpXqq such that @φ : X Ñ Y,

FpXq

Fp f q
��

αX // GpXq

Gp f q
��

FpYq αY
// GpYq

12



2. α is an isomorphism if αX is an isomorphism @X.

3. F : CÑ D is an equivalence of categories if DG : DÑ C such that G ˝ F : CÑ C
is ”naturally isomorphic” to Idφ.

Example 4.13. 1. VK category of vector spaces over K, finite dimensional.

VK Ñ VK

obpVKq “ tpE, f q|E finite dimensional vector space over K, AutKpEqu
pE, f q Ñ pF, gq

E
f
��

h // F
g
��

E h // E
F : VK Ñ VK

pE, f q ÞÑ pE˚, p f ˚q´1q

2. F is not isomorphic to IdVK (among not isomorphic to this)

G : VK Ñ VK
pE, f q ÞÑ pE˚˚, p f ˚q˚q

G isomorphic to IdVK .

Definition 4.14. CÕF
G D G is adjoint to F if @X P ObpCq, @ P ObpD,

αX,Y : MorDpFpXq,Yq » MorDpX,GpYqq

Example 4.15. A Ñ B ring hom,

ModA
F //ModB

G //ModA

M //MbA B

N // N

HomBpMbA B,Nq » HomApM,Nq
F is adjoint to G.

5 Presheaf

Definition 5.1. X topological space. A pre sheaf F on X of groups is functor (con-
travariant) from X to Groups, where X, obpXq “ open subset of X.
U,V open subsets of X

MorpU,Vq “
"

canonical inclusion of U in V if U Ă V
H otherwise

13



@U Ď X open subset

1. U ÞÑ F pUq group

2. if U Ď V ñ DρVU : F pVq Ñ F pUq homomorphism of groups such that:

(a) fUU “ IdF pUq, @U;

(b) U Ď V Ď W open subset

F pWq
ρWV

��

ρWV // F pUq

F pVq
ρVU

::uuuuuuuuu

(c) F pHq “ t0u.
Elements of F pVq are called a solution of F on V;
If U Ď V, s P F pVq, s|U :“ ρVUpsq is called the restriction of s to U.

Example 5.2. X topological space @U Ď X, F pUq “ CpU,Rq. If U Ď V, ρVU :
F pUq Ñ F pVq restriction maps;

Constant pre sheaf: we fixe a group G; F : U Ñ G, H ÞÑ t0u (if U ‰ H), ρUV “ IdG
if V ‰ H and ρUH “ 0 maps is a presheaf.

5.1 Sheaves

Definition 5.3. A sheaf on X is a pre sheaf F on X such that:

1. (Uniqueness condition) @U Ď X, @tUiui open covering of U,
F Ñ

š

iF pUiq

s ÞÑ ps|Uiqi
is injective.

2. (glueing condition): U, tUiui then @psiqi, si P F pUiq such that si|UiXU j “ s j|UiXU j.
There exists (unique) in F pUq such that s|Ui “ si, @i.

Remarque 5.4. 1. Condition1. and 2. ô 0 // F pUq r //
š

iF pUiq
p //q //

š

i, jF pUi XU jq

s // ps|Uiqi

"

pppsiqiq “ psipUiXU jqqpi, jq

qppsiqiq “ ps jqUiXU j

2. exact ô

"

r injective
ppαq “ qpαq ñ α P Imprq, α P

š

iF pUiq
.

F presheaf of group, therefore one can replace pp, qq by psiqi ÞÑ psiq|UiXU j ¨ps jqpUiXU jq´1
pi, jq

.

Example 5.5. 1. U ÞÑ CpU,Rq is a sheaf;

14



2. constant pre sheaf is not a sheaf because if U Ď X not connected U “ U1
š

U2,
G “ GpU1

š

U2q so that G “ GpU1q and G “ GpU2q. @s P GpU1q, t P GpU2q,
s ‰ t ñ s|U1XU2 “ t|U1XU2 because U1 XU2 “ H. But there is a section h P GpUq
such that h|U1 “ s and h|U2 “ t.
X “ C, U Ñ t f P C0pU,Cq| f pzq “

ř

ně0 anzn absolutely convergent serieu presheaf
not a sheaf.

5.2 Morphisms of pre sheaves

F , G presheaves in X a morphism φ : F Ñ G is given by: @UsetX, φpUq : F pUq Ñ
GpUq homomorphism of groups such that @V Ď U

F pUq
ρUV

��

φpUq // GpUq
ρUV

��
F pVq

φpVq
// GpVq

φ is natural transformation of functors. A morphism of sheaves is a morphisms of pre
sheaves between sheaves.
We denote by PshX the category of pre sheaves on X and ShX the category of sheaves
on X, it is a full subcategory PshX.
C
8pRq sheaf of C8 functions on X.

C
8
X pRq Ñ C

8
X pRq

f ÞÑ f 1

derivation, this is an homomorphism.

5.3 Subsection of a sheaf F

A sub sheaf is a sheaf G such that GpUq Ď F pUq subgroup @φ.

GpUq Ă F pUq
ρUV

��
ρUV

��
GpVq Ă F pVq

5.4 Sheaf of ideals

— θ a sheaf of commutative unitary ring, sheaf of θ-modules
— @U

— F pUq is a θpUq-module
— V Ď U, a P θpVq, s P F pUq ñ pasq|V “ a|Vs|V
— F is a sheaf.

— sheaf of ideals ρ of θ is sub sheaf of θ as sheaf of θ modules (i.e. ρpUq ideal of
θpUq, @U).

15



Example 5.6. 1. If φ : F Ñ G is a morphism of sheaves of groups then

kerpφq : U Ñ kerpφpUqq
F pUq ÞÑ GpVq ñ kerpφq is a shea f

What would be Impφq, φ : F Ñ G?
Natural way :

U Ñ ImpφpUqq : F pUq Ñ GpUq

This defines a sub pre sheaf. But in general it is not a sheaf. When F and G are
sheaves.

2. H “ holomorphic function on C. U Ď C, HpUq “ tholomorphism f unctions U Ñ

Cu, GpUq “ tholomorphic f unction : U Ñ C˚u, exp : HpUq Ñ GpUq, exp : H Ñ

G.
Impexpq is not a sheaf, gi P HpUiq, fi “ exppgiq, U “ YiUi, fi P GpUiq, fiUiXU j

“

f j|UiXU j does not implies Dg P HpUq such that exppgq|Ui “ fi.

5.5 Inductive limite

Definition 5.7. We are given a set I of indexes. @i P I, a group Ei such that
— I is partially ordered and @i, j P I, Dk P I, i ď k, j ď k;
— @i, j P I, i ě j, φi, j : Ei Ñ E j group homomorphism. If i ď j ď k;

Ei

φik
��

φi j // E j

φ jk

��Ek

— φii “ Idii.
lim
ÝÑ

Ei inductive limit is a group. The homomorphism Ek Ñ lim
ÝÑi

Ei @k such that if k ď j,

Ek

��

φ // E j

φ j||zz
zz
zz
zz
z

lim
ÝÑi

Ei

(Universal property)
If G is a group and @i, ψi : Ei Ñ G group homomorphism such that @i ď j,

Ei

φi
��

φi j // E j

ψ j����
��
��
�

G
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then there exists a unique factorization ψ : lim
ÝÑi

Ei Ñ G, @i,

Ei

φi

��

ψi // G

ψ||zz
zz
zz
zz
z

lim
ÝÑi

Ei

Proposition 5.8. lim
ÝÑi

Ei exists and is unique up to unique isomorphism.

Proof. — Uniqueness: standard argument (up)
existence: Set

š

iPI Ei, „ x, y P
š

i Ei ñ x P Ei0 and u P E j0 .
x „ y if Dk0 ě i0 and j0 such that φi0k0pxq “ φ j0k0pgq. Take k2 ě k0, k1,

Ei0

  A
AA

AA
AA

A
E j0

~~}}
}}
}}
}}

  A
AA

AA
AA

A
Ek0

~~}}
}}
}}
}}

Ek0

  A
AA

AA
AA

A
Ek1

~~}}
}}
}}
}}

Ek2

š

i Ei{ „, one can check φk : Ek Ñ
š

i Ei Ñ
š

Ei{ „, tφk : Ek Ñ
š

i Ei{ „uk is an
inductive limit. �

Example 5.9. X topological space, F pre sheaf on X, x0 P X, I “ topen subsets o f X containing x0u,
U,V P I, U ď V if V Ď U, EU “ F pUq, U ď V ñ V Ď U,

φU|V : EU
// EV

F pUq
ρUV // F pVq

U,V P I ñ U ď U XU and V ď U X V.

Definition 5.10. Fx0 :“ lim
ÝÑ

x0 P UF pUq: the stalk of F at x0.

Example 5.11. F “ C0
XpRq, x0 P X, Fx0 “ tr f s| f P C0pU,Rq, x0 P Uu

— r f s “ rgs if g “ f on some open neighborhood of x0;
— s P F pUq, x0 P U, denote by sx0 the image of s in Fx0.

Lemma 5.12. Let F be a sheaf on X then @U Ď X, the map

F pUq Ñ
š

xPU Fx
s ÞÑ psxqxPU

is injective

Proof. Let s, t P F pUq such that sx “ tx, @x P U. For any x P U, sx “ tx mean, Dx P Vx
such that s|Vx “ t|Vx . V “ YxPUVx ñ s “ t. �
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Proposition 5.13. Let G : F Ñ G morphism of sheaves. For any x P X, suppose that
φx : Fx Ñ Gx is an isomorphism then φ is an isomorphism.

Proof. Definition of φx
φ : F Ñ G morphism of presheaves, x0 P X, φx0 : Fx0 Ñ Gx0 , @x0 P U, x0 P V Ď U

F pUq
ρUV

$$H
HH

HH
HH

HH

can
��

GpUq
φpUqoo

can

##H
HH

HH
HH

HH
can // Gx0

Fx0 F pVq // GpVq

OO

s P Fx0 Ñ Gx0 ñ Dx0 P U, t P F pUq, such that s “ tx0 .

lim
ÝÑ

limEi “
ž

Ei{sim

t P F pUq, φpUq : F pUq Ñ GpUq (φpUqptqqx0 such that s “ tx0 .
U Ď X, φpUq : F pUq » GpUq

1. φpUq injective

F pUq

��

φpUq // GpUq

��
ś

xPCFx
//
ś

xPCGx

t P GpUq, @x P U, tx “ φxpspxqq, spxq P Fx, Dsx P F pUxq depending on x such that
sx “ spxq.
tx “ φxpsq, tx “ φpVxqpsqx “ φxpsxq in GpVxq. t and φpVxqpsq some stalk at x then
Dx P Wx Ď Vx on which t|Wx “ s|Wx . U “ YxPUWx Be careful s “ sx depend on x,
psx|Wxqx, sx|WxXWysx|WxXWy glueing condition ñ Ds P F pUq, s|Wx “ sx, @x,
φpUqpsqx “ tx, @x P Cñ φpUqpsq “ t ñ φpUq surjective.

�

5.6 Sheaf associated to a presheaf

Let F be a presheaf on X of opposite sets.

Proposition 5.14. There is a unique pair F ` sheaf on X and θ : F Ñ F ` a morphism
of presheave such that @F Ñ G from F to a sheaf G has an unique factorization

F

θ
��

ψ // G

F
`

ψ`

>>}}}}}}}}

@x P X, Fx » F
`

x

Definition 5.15. 1. If f : F Ñ G a morphism of sheaves then Impφq is the sheaf
associated to the pre sheaf U ÞÑ ImpφpUqq.
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2. If F Ă G sub sheaf then G{F “ sheaf associated to the pre sheaf U Ñ GpUq{F pUq;
3. We say that a morphism φ : F Ñ G is surjective if Impφq “ G (ô φx : Fx � Gx
@x P X) in shX, φ is surjective if and only if φ is an epimorphism.

4. (Exact sequence) F
φ // G

ψ //H mean kerpψq “ Impφq

ô @x P X, Fx
φx // Gx

ψx //Hx exact;

5. f : X Ñ Y continuou, F sheaf on X, G sheaf on Y ñ f˚F direct image of F by
f .

6. f˚F : U Ď Y Ñ F pφ´1pVqq, U Ď X sheaf associated U Ñ lim
ÝÑ f pUqĂW,W open in Y

GpWq.
Presheaf but in general not a sheave

@x P X, p f´1
Gqx » G f pxq

19


